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1. An isotropic tensor is one the values of whose components are unaltered by any
rotation of rectangular axes (with metric 2i(rfa;i)

2). Those up to order 4 in 2 and 3
dimensions have many applications. The results suggest a general theorem for tensors
of order m in n dimensions, that any isotropic tensor can be expressed as a linear
combination of products of 8 and e tensors, where 8ti = 1 if i = j and 0 otherwise, and
e^ ^ is 0 if any two of the ix to in are equal, 1 if ix.-.in is an even permutation of
1, 2, 3,. . . , n, and — 1 if it is an odd permutation.

For n > 3 a rotation is not necessarily about any single axis. We define it as an
orthogonal transformation of determinant + 1. This can be shown to be expressible
as the result of at most \n(n — 1) successive rotations on the coordinate planes, and
therefore it is enough to consider such rotations separately. This is stated without
proof, among other cases, by D. E. Littlewood ((4), p. 18). I have not seen a proof in
print. Dr G. A. Reid has given me one. Consider a rotation through a on the 12 plane.
The matrix lXi becomes

( cos aln + sin od2X cos al12 + sin al22 . \

— sin alu + cos cd2X — sin al12 + cos al22 . I.
U

Take tana = —^Ihz'y then l12 is annihilated. It may be convenient to take a so that
l'n ~& 0. Then we proceed to remove I13---lln. Since the sum of squares of elements of
a row or column in an orthogonal matrix is 1, l'^ = 1, and all of l'2V..lni = 0- Thus by
n — 1 rotations on the coordinate planes 1 is reduced to a form with l'n= 1; the other
elements with either i = 1 or j = 1 are 0, and the rest form an orthogonal matrix of
order n— 1. By repetition 1 is reduced by \n(n— 1) rotations to one with all diagonal
lti equal to 8^; multiplying by the reciprocal of this set expresses lit as a product of 8i}

and a set of rotations on the coordinate planes.
I t might apparently happen that VTr (not summed) at some stage cannot be made

positive, and must be — 1. But if, say, 1'22 and l'3Z are both — 1 a rotation of it on the
23 plane would make them + 1. If only one diagonal element remains — 1 the matrix
represents a reflexion, which we are not considering.

2. The main theorem is as follows. If a tensor uit ^ is transformed by a rotation 1,
giving , _ , ,
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then u'ti im = tt3l...jm, if and only if it is expressible as a linear combination of products of
the form Si it and, possibly one e factor.

The condition is obviously sufficient. Necessity can be proved as follows.
We call the irS suffixes. Each can take the values 1 to n, and when numerical values

are given, we call them N suffixes.
Rotate through n on the 12 plane. The matrix 1 for the transformation is

n i = 2̂2 = ~ 1> 1̂2 = hi = 0,

other lti being Si:j. If in a component N suffix 1 occurs k times and 2 occurs I times, the
component is multiplied by (— l)k+l. Hence if no component is altered it must be 0
or k + l must be even. This can be applied to any pair of N suffixes; thus non-zero
components separate into two classes, in one of which every N suffix occurs an even
number of times, and in the other an odd number of times.

Rotate through \n on the 12 plane. The matrix for the transformation is

other diagonal components 8{j. Write the component as u(k, I)) v, where v is unaltered
by this transformation. Then the transformed component is ( — l)ku(l, k)v. This will
be equal to u(k, I) v provided either k is even and u(l, k) = u(k, I), or if k is odd and
u(l, k) = —u(k, I). In the first case transposition of two suffixes leaves the component
unaltered; in the second it reverses it. By the last result, or by rotation through — \TT,
if k is even, so is I, and if k is odd, so is I.

If k and I are odd every N suffix must occur an odd number of times in every non-
zero component. If for instance N suffixes 1 and 2 occurred an odd number of times,
and 3 an even number, a rotation through \v on the 13 plane would reverse the sign.

3. Any N suffix that occurs in a component occurs in places corresponding to a par-
ticular set of S suffixes. Under any rotation through \TT on a coordinate plane, two
N suffixes are interchanged, with or without reversal of sign, but there is no change of
the S suffixes that they replace. Thus the distribution of the sets of equal N suffixes
specifies a partition of the S suffixes, such that all of a set take the same value of an
N suffix. Different partitions transform independently (e.g. no rotation can turn 1122
into 1313). Thus every such partition specifies an independent set of equal components
and is specified by which of the ir take equal N values. Consider then partitions so
specified. The original tensor is a linear combination of them.

In the case of even k (when m must be even) consider components with ix = i2 = 1
or ix = i2 = 2. The remaining iT can taken any values up to n. Rotation on the 12 plane
does not alter the components, and so long as none of i3 to im is 1 or 2 they are unaltered
by any rotation on the rs planes where ir, is > 1,2. Thus all these components are of
the form 8ili2vig im, with ilti2 =1,2, where v is an isotropic tensor of order m — 2
inn —2 dimensions. In some components of the original tensor some of the iT for r > 2
may also be 1 or 2; but consider rotations on planes Ir, 2r with r > 2. If u is still
isotropic the components are unaltered. If not, such rotations still define a possible
form of u, say u0, which we may subtract from the original u, leaving w. This will
leave components zero unless, for instance, i ^ ^ 4 axe all 1 or all 2. Suppose there
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are A components; then rotating through \v would give (apart from an unchanged
factor)

wiiii = 2 (72) A = iA> wins = w'2211 = \A, w'2222 = \A

instead of A, 0, 0, A. Thus w is not isotropic for rotations on the 12 plane. Hence u
is not isotropic in n dimensions. Then, by repetition, u is the product of S tensors.
A similar argument will apply if an N suffix occurs a larger even number of times.
We could have begun with components where equal N suffixes are not cases ofiv i2 and
hence any isotropic tensor with even & is a linear combination of products Siri>.

Since reflexion does not alter components with even k this result is also correct for
orthogonal transformations that include reflexions.

Alternatively, consider the case n = 2 and the zero component ulu 2, where 1 occurs
2k — 1 times and 2 once. Make a small rotation lti = 8^ + v^, where 7/n = i\22 = 0,
t]12 = a, y21 = — a, other t/y = 0. Then

with j x . . -jzii-i = l'J2k = 2- If all pairs iT,jr are equal the contribution is the original
component, which is zero. The terms linear in a give

a(«21H...2 + «12...2 + • • • + %U...22) - a«lll.. .l = °-

Hence ulu A = v,2111 2 + u12 2 +... +uni 22. Since all terms in the brackets are com-
ponents of independent tensors, we can put all but the first zero, and it will follow that
if this is a product of S's so is wm...i. The same applies to other components.

If n > 2 the result follows by a small rotation on the 12 plane keeping the other axes
fixed.

This result for n = 3 and m = 4 is derived in this way in Cartesian Tensors ((l), eq. 14,
p. 69). I t is found in Methods 0/ Mathematical Physics (2) by constructing a scalar
polynomial which must, for TO = 4, be {x\ + a;|)2, and the result is found by differentiation.

4. In the case of odd k, every N suffix must occur an odd number of times in every
non-zero component (since 0 is an even number). In each set of S suffixes that take the
same N value, pick out the first, which we shall call the E suffix. Under rotation each
remains the first in the set of equal N suffixes. Apart from the E suffixes every N suffix
occurs an even number of times in every component, and its contribution in a \n
rotation does not alter the component, and the signs will be all the same or all opposite
to those of the components of ef,...in- The components are therefore € times a set of
quantities, say ®<B+1...i(B. Contrast with eix in. This must give an isotropic tensor;
but we see that this is nlv^^ ^ which must therefore be an isotropic tensor with
every N suffix occurring an even number of times, and therefore a linear combination
of S products. This completes the theorem.

It follows that for non-zero isotropic tensors every m < n must be even, and con-
versely an e factor can arise only for ra ^ n.

5. No isotropic tensor need contain more than one e factor. For the product

fii....i, ek....kn = (0. l o r - 1 )
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according as any pair of i's or fc's are equal, or if all t's and all k's are different and
both derived from 1,2,..., n by an even or both by an odd permutation, or if one is
derived by an even and the other by an odd permutation. Now

f 1 if ip = kq 4= iq, kp,

I - 1 if \ = K * Vkg,
lO otherwise.

Multiply by the remaining Sik and we shall have + 1 if the i and k are both odd or both
even permutations of 1,2,..., n, — 1 if one is odd and the other even. Hence the product
of two e's can be expressed in terms of 8's. In 3 dimensions we have

eikm ejln = 8ij 8kl 8mn ~ 8ij $knSml + $il Skn 8mj ~ $il 8kj Smn + $in $kj ̂ ml ~Am Slcl Smj >

which Vicente and I (3) have found useful in calculating elastic energies in a stressed
sphere when the displacement is everywhere at right angles to the radius vector.

6. Weyl(il) has given a result equivalent to the main theorem but by a rather
indirect method and not stated in this form.

The complete theorem was given by M. Pastori(s-iO) and the methods are largely,
but not entirely, similar to mine. I am grateful to Prof. F. Mainardi for the references.

In writing this note I have had useful suggestions from Drs G. A. Reid, E. Fraenkel,
and R. Burridge.
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